- 【Title】Damage inference and residual capacity assessment for an E-Defense 2018 ten-story RC structure
- 【Abstract】This paper presents an enhanced vision-based, post-earthquake performance assessment framework for RC building structures.
This framework incorporates a damage inference method that can estimate the stiffness and strength reduction factors of components in stories
without damage inspection based on the inter-story drift. The framework was validated by the application to the full-scale shaking table test of
an E-Defense 2018 ten-story RC structure. The vision-based damage detection method effectively detected multicategory seismic damage on the component
surfaces, and the damage states estimated by the vision-based method were consistent with the results estimated by the measured plastic hinge rotation.
The proposed inter-story drift-based damage inference method reasonably estimated the reduction factors of components in the stories without damage photos.
The numerical model updated by the reduction factors of damaged components provided accurate estimates of the fundamental vibrational frequencies after
different levels of seismic shaking, and the drift-based inference method significantly improved the results compared with the trivial linear interpolation
method. The residual capacity curves provided by pushover analysis of the updated model using the reduction factors as per FEMA 306 and Chiu et al. reasonably captured the hysteretic responses of the structure.
- 【Keywords】 post-earthquake performance assessment; damage inference, residual capacity; reduction factor; shaking table test; computer vision
- 【Index】
- 【Fulltext】PDF download